Project Roboat: An Autonomous Robotic Electric Boat Transportation System For Amsterdam
Geschreven op 23-1-2022 - Erik van Erne. Geplaatst in Vervoer en OVRoboat is the world’s first major research program on autonomous floating vessels in metropolitan areas.
It allows for creating dynamic infrastructures, transportation of goods and people, and environmental sensing on Amsterdam’s canals.
After working on 1:4 and 1:2 scale prototypes in the first three years of research, we are now working on the full-scale prototype.
While the first prototypes of self-driving cars are taking to the road, Amsterdam ushers in a new chapter in the international push for autonomous vehicles. Roboat is the result of innovative large-scale research that explores and tests the rich possibilities for autonomous systems on water. It represents a fantastic opportunity and privilege for the city of Amsterdam to have the world’s most prominent scientists work on solutions with autonomous boats - especially in a location where water and technology have been linked for ages.
Roboat offers enormous possibilities in terms of environmental exploration and sensing. Roboats could also clear the canals from waste. The floating dumpsters can play a key role in source separation when other types of waste are added to the equation. Since the current paradigm requires that residents take different types of trash to distinct locations, the inconvenience and complexity frequently result in lower recovery rates for recyclables and environmentally harmful waste. In response, Amsterdam is keen on significantly improving waste separation rates by 2020.
Roboat uses Laser Image Detection and Ranging (LiDAR) data for localization and mapping, as LiDAR data is more direct and robust and localization needs an offline cloud map, because mapping must occur before localization.
Roboat is a joint research program of Massachusetts Institute of Technology (MIT) and Amsterdam Institute for Advanced Metropolitan Solutions (AMS Institute). The City of Amsterdam, Amsterdam’s water company Waternet and the City of Boston are supportive of the 5-year program. The novel robotic boat is easy to manufacture, highly maneuverable, and capable of accurate trajectory tracking in both indoor and outdoor environments.
The project allows for innovations in various domains, stands strong with top research and knowledge expertise and receives univocal support. Areas of innovation are for instance assembly, sensing and waste removal. The principal investigator and professor of MIT Carlo Ratti highlighted the dynamic and temporary floating infrastructure such as bridge or stages that can assemble on demand in a matter of hours.